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Theoretical Motivations

• Producing the observed baryon asymmetry in the universe requires interactions that
violate baryon number, B (Sakharov, 1967).

• General phenomenological possibility of baryon number violation via the |∆B| = 2
process n ↔ n̄ (Kuzmin, 1970).

• Since (anti)quarks and (anti)leptons are placed in same representations in grand unified
theories (GUT’s), the violation ofB and L is natural in these theories. Besides proton
decay, n− n̄ oscillations can occur (Glashow, 1979; Marshak and Mohapatra; Chang
and Chang, 1980). GUT’s are appealing since they (i) embed the SU(3)c, SU(2)L,
and U(1)Y factor groups of the SM in a simple group and hence predict the observed
gauge couplings g3, g2, and gY ; (ii) quantize charge, and (iii) unify quarks and leptons.

• Some sources of recent interest in n− n̄ oscillations:

– in some supersymmetric models (Babu and Mohapatra, 2001; Babu, Mohapatra,
Nasri, 2006,2007)

– in models with extra dimension(s) (Nussinov and Shrock, 2002)



General Formalism

n− n̄ Oscillations in Field-Free Vacuum:

〈n|Heff |n〉 = mn − iλ/2 and (assuming CPT), 〈n̄|Heff |n̄〉 = mn − iλ/2,
where Heff denotes relevant Hamiltonian and λ−1 = τn = 0.89 × 103 sec. Heff

may also mediate n ↔ n̄ transitions: 〈n̄|Heff |n〉 ≡ δm. Consider the 2 × 2 matrix

M =

(

mn − iλ/2 δm
δm mn − iλ/2

)

Diagonalizing M yields mass eigenstates

|n±〉 =
1

√
2
(|n〉 ± |n̄〉)

with mass eigenvalues m± = (mn ± δm) − iλ/2.

So if start with pure |n〉 state at t = 0, then there is a finite probability P for it to be
an |n̄〉 at t 6= 0:

P (n(t) = n̄) = |〈n̄|n(t)〉|2 = [sin2(t/τnn̄)]e
−λt

where τnn̄ = 1/|δm|. Current limits give τnn̄ >∼ 108 sec, so τnn̄ >> τn.



n− n̄ Oscillations in a Magnetic Field ~B:

- Relevant to analysis of reactor experiments searching for n− n̄ oscillations

- n and n̄ interact with ~B via magnetic moment ~µn,n̄, µn = −µn̄ = −1.9µN ,
where µN = e/(2mN) = 3.15 × 10−14 MeV-Tesla, so

M =

(

mn − ~µn · ~B − iλ/2 δm

δm mn + ~µn · ~B − iλ/2

)

Diagonalization yields mass eigenstates

|n1〉 = cos θ |n〉 + sin θ |n̄〉 , |n2〉 = − sin θ |n〉 + cos θ |n̄〉
where

tan(2θ) = − δm

~µn · ~B
with eigenvalues

m1,2 = mn ±
√

(~µn · ~B)2 + (δm)2 − iλ/2



Experimentally, reduce | ~B| = B to B ∼ 10−4 G = 10−8 T, so |µn|B ' 10−21

MeV. Since |δm| << |µn|B from exp., |θ| << 1 and

∆E ≡ m1 −m2 = 2

√

(~µn · ~B)2 + (δm)2 ' 2|~µn · ~B|. The transition
probability is

P (n(t) = n̄) = sin2(2θ) sin2[(∆E)t/2] e−λt

In a reactor n− n̄ experiment, arrange that n’s propagate a time t such that
|~µn · ~B|t << 1 (and thus also t << τn); then

P (n(t) = n̄) ' (2θ)2
(∆Et

2

)2

'
(

δm

~µn · ~B

)2(

~µn· ~B t
)2

= [(δm) t]2 = (t/τnn̄)
2

Most sensitive reactor n− n̄ exps. done with ILL High Flux Reactor (HFR) at Grenoble
(Baldo-Ceolin, Fidecaro,.., 1985-1994), last, L ∼ 70 m, neutrons cooled to liq. D2

temp., kinetic energy E ' 2 × 10−3 eV, vel. v ' 600 m/s, t ' 0.11 sec., set limit

τnn̄ ≥ 0.86 × 108 sec (90 % CL)

i.e., |δm| = 1/τnn̄ ≤ 0.77 × 10−29 MeV. Many years since this last reactor
experiment; ideas for new reactor exps. (Kamyshkov et al.)



n− n̄ Oscillations in Matter:

For n− n̄ oscillations involving a neutron bound in a nucleus, consider

M =

(

mn,eff. δm
δm mn̄,eff.

)

with

mn,eff = mn + Vn , mn̄,eff. = mn + Vn̄

where the nuclear potential Vn is real, Vn = VnR, but Vn̄ has an imaginary part
representing the n̄N annihilation: Vn̄ = Vn̄R − iVn̄I with
VnR, Vn̄R, Vn̄I ∼ O(100) MeV.

Mixing is thus suppressed; tan(2θ) is determined by 2δm/(mn,eff. −mn̄,eff.), and

2δm

|mn,eff. −mn̄,eff.|
=

2δm
√

(VnR − Vn̄R)2 + V 2
n̄I

<< 1

Using the reactor exp. bound on |δm|, this gives |θ| <∼ 10−31. This suppression in
mixing is compensated for by the large number of nucleons in a nucleon decay detector
such as Soudan-2 or SuperKamiokande e.g., ∼ 1033 n’s in SuperK.



Eigenvalues:

m1,2 =
1

2

[

mn,eff. +mn̄,eff. ±
√

(mn,eff. −mn̄,eff.)2 + 4(δm)2

]

Expanding m1 for the mostly n mass eigenstate |n1〉 ' |n〉,

m1 ' mn + Vn − i
(δm)2 Vn̄I

(VnR − Vn̄R)2 + V 2
n̄I

Imaginary part leads to matter instability via n̄n, n̄p → π’s, with mean multiplicity
〈nπ〉 ' 4 − 5 and rate

Γm =
1

τm
=

2(δm)2|Vn̄I|
(VnR − Vn̄R)2 + V 2

n̄I

So τm ∝ τ 2
nn̄. Lower bound on τnn̄ from n− n̄ searches in reactor experiments thus

yields a lower bound on τm and vice versa; with estimated inputs for VnR, Vn̄R, and
Vn̄I, τnn̄ > 0.86 × 108 s yields τm >∼ 1031 yr.



Direct limits on matter instability have been reported by IMB, Kamiokande, Frejus,
Soudan-2, and SuperK, in particular,

Soudan-2 limit: τm > 0.72 × 1032 yr (90 % CL; Chung et al., 2002), equiv. to

τnn̄ >∼ 1.3 × 108 sec.

prelim. SuperK limit: τm > 1.77 × 1032 yr (90 % CL; Ganezer et al., 2007), equiv.

to τnn̄ >∼ 3.2 × 108 sec.



Operator Analysis and Estimate of Matrix Elements

At the quark level n → n̄ is (udd) → (ucdcdc). This is mediated by 6-quark
operators Oi, so the effective Hamiltonian is

Heff =
∑

i

ciOi

For d-dimensional spacetime the dimension of a fermion field ψ in mass units is
dψ = (d− 1)/2, so dimension dOi

= 6dψ = 3(d− 1) and
dci = d− dOi

= 3 − 2d. For d = 4, dψ = 3/2, dOi
= 9, and dci = −5. If the

fundamental physics yielding the n− n̄ oscillation is characterized by a mass scale
MX, then expect ci ∼ aiM

−5
X so with Heff =

∫

d3xHeff , the transition
amplitude is

δm = 〈n̄|Heff |n〉 =
1

M5
X

∑

i

ai〈n̄|Oi|n〉

Hence δm ∼ aΛ6
QCD/M

5
X, where a is a generic ai and ΛQCD ' 200 MeV arises

from the matrix element 〈n̄|Oi|n〉.



Operators Oi must be color singlets and, for MX larger than the electroweak
symmetry breaking scale, also SU(2)L × U(1)Y -singlets. Relevant operators:

O1 = [uαTR CuβR][dγTR Cd
δ
R][dρTR Cd

σ
R](Ts)αβγδρσ

O2 = [uαTR CdβR][uγTR Cd
δ
R][dρTR Cd

σ
R](Ts)αβγδρσ

O3 = [QiαT
L CQjβ

L ][uγTR Cd
δ
R][dρTR Cd

σ
R]εij(Ta)αβγδρσ

O4 = [QiαT
L CQjβ

L ][QkγT
L CQmδ

L ][dρTR Cd
σ
R]εijεkm(Ta)αβγδρσ

where QL =
(u
d

)

L
, i, j.. are SU(2)L indices, and color tensors are

(Ts)αβγδρσ = εραγεσβδ + εσαγερβδ + ερβγεσαδ + εσβγεραδ

(Ta)αβγδρσ = εραβεσγδ + εσαβεργδ

(Ts)αβγδρσ is symmetric in the indices (αβ), (γδ), (ρσ).

(Ta)αβγδρσ is antisymmetric in (αβ) and (γδ) and symmetric in (ρσ).



A given theory determines the coefficients ci; then one needs to calculate the matrix
elements 〈n̄|Oi|n〉 to predict δm and thus the resultant n− n̄ rate.

Calculation of these matrix elements 〈n̄|Oi|n〉 was performed using the MIT bag
model (Rao and Shrock, Phys. Lett. B 116, 239 (1982)). Results involve integrals over
sixth-power polynomials of spherical Bessel functions from the quark wavefunctions in
the bag model. Results:

|〈n̄|Oi|n〉| ∼ O(10−4) GeV 6 ' (200 MeV )6 ' Λ6
QCD

It would be worthwhile to go beyond the approximations of the MIT bag model and to
calculate these matrix elements in full QCD using lattice gauge theory methods.



n− n̄ Oscillations in an Extra-Dimensional Model

Current exp. data fully consistent with 4D Minkowski spacetime, but useful to explore
possibility of extra dimensions, both from phenomenological point of view and because
main candidate theory for quantum gravity - string theory - involves higher dimensions.

Here we focus on theories where SM fields can propagate in the extra dimensions and
the wavefunctions of SM fermions have strong localization (with Gaussian profiles) at
various points (branes) in this extra-dimensional space. Effective size of extra
dimension(s) is L; ΛL = L−1 can be ∼ 100 TeV, << MPl.

Such models are of interest partly because they can provide a mechanism for obtaining
a hierarchy in fermion masses and quark mixing (e.g., Arkani-Hamed + Schmaltz;
Mirabelli + Schmaltz, 2000). Although these are just toy models, they show how
n− n̄ oscillations can arise in physics beyond the SM.

In generic models of this type, excessively rapid proton decay can be avoided by
arranging that the wavefunction centers of the u and d quarks are separated far from
those of the e and µ. However, this does not guarantee adequate suppression of
n− n̄ oscillations. We have analyzed this (Nussinov and Shrock, Phys. Rev. Lett. 88,
171601 (2002); see also Huber and Shafi, Phys. Lett. 512, 365 (2001)).



Denote usual spacetime coords. as xν, ν = 0, 1, 2, 3 and consider ` extra compact
coordinates, yλ. Let SM fermion have the form Ψ(x, y) = ψ(x)χ(y), where χ(y)
has support for 0 ≤ yλ ≤ L.

Use a low-energy effective field theory approach with an ultraviolet cutoff M∗ and
consider only lowest relevant mode in the Kaluza-Klein (KK) mode decompositions of
each Ψ field.

To get hierarchy in 4D fermion mass matrices, have the fermion wavefunctions χ(y)
localized with Gaussian profiles of half-width µ−1 << L at various points in the
higher-dimensional space:

χf(y) = Ae−µ2|y−yf |2

where |yf | = (
∑`

λ=1 y
2
f,λ)

1/2.

Starting from the Lagrangian in the d-dimensional spacetime, one obtains the resultant
low-energy effective field theory in 4D by integrating over the extra ` dimension(s).
The normalization factor A = (2/π)`/4µ`/2 is included so that after this integration
the 4D kinetic term ψ̄(x)i∂/ψ(x) has canonical normalization.

Denote ξ = µ/ΛL; choice ξ ∼ 30 yields adequate separation of fermions while fitting
in interval [0, L]. (Localization can be produced in a field-theoretic manner for ` = 1
by coupling fermion to scalar field with a kink, similarly for ` = 2.)



A Yukawa interaction in the d-dimensional space with coefficients of order unity and
moderate separation of localized wavefunctions yields a strong hierarchy in the effective
low-energy 4D Yukawa interaction because the convolution of two of the fermion
Gaussian wavefunctions is another Gaussian,

∫

d`yχ̄(yf)χ(yf ′) ∼
∫

d`ye−µ2|y−yf |2e−µ2|y−yf ′|2 ∼ e−(1/2)µ2|yf−yf ′|2

Have UV cutoff M∗ satisfying M∗ > µ for the validity the low-energy effective field
theory analysis. Take ΛL ∼ 100 TeV for adequate suppression of neutral
flavor-changing currents; with ξ = 30, this yields µ ∼ 3 × 103 TeV.

In d-dimensions, Heff,4+` =
∑4

i=1 κiOi, where the operators Oi are comprised of
the (4 + `)-dimensional quark fields corresponding to those in Oi as Ψ corresponds to
ψ. Here mass dimension of coefficients dκi = 3 − 2d = −(5 + 2`). Hence we write

κi = ηi/M
5+2`
X and, with no loss of generality, take η4 = 1. Scale MX is plausibly

∼ ΛL.

Now carry out the integrations over y to get, for each i,

ciOi(x) = κi

∫

d`yOi(x, y)



Consider case ` = 2. Denoting

ρc ≡ 4µ4

3π2M9
X

we find
ci = ρcηi exp

[

−(4/3)µ2|yuR − ydR|2
]

, i = 1, 2

c3 = ρcη3 exp[−(1/6)µ2(2|yQL − yuR|2 + 6|yQL − ydR|2

+ 3|yuR − ydR|2)] (1)

c4 = ρc exp
[

−(4/3)µ2|yQL − ydR|2
]

Use fit to data for ` = 2 (Arkani-Hamed and Schmaltz), which gives

|yQL − yuR| = |yQL − ydR| ' 5µ−1

|yuR − ydR| ' 7µ−1

Can also include corrections due to Coulombic gauge interactions between fermions
(Nussinov and Shrock, Phys. Lett. B 526, 137 (2002)).

We find cj for j = 1, 2, 3 are << c4, and hence focus on c4.



To leading order (neglecting small CKM mixings), |yQL − ydR| is determined by md

via relation
md = hd

v
√

2
with

hd = hd,0 exp[−(1/2)µ2|yQL − ydR|2]

where hd,0 is the Yukawa coupling in the (4 + `)-dimensional space, so that

exp
[

−(1/2)µ2|yQL − ydR|2
]

=
21/2md

hd,0v

Take hd,0 ∼ 1 and md ' 10 MeV; then contribution to δm from O4 term is

δm ' c4〈n̄|O4|n〉 '
(

4µ4

3π2M9
X

)

(

21/2md

v

)8/3

〈n̄|O4|n〉

From MIT bag model calculation we have

〈n̄|O4|n〉 ' 0.9 × 10−4 GeV6



Requiring that the resultant |δm| be less than the experimental limit τnn̄ > 3 × 108

sec, i.e., |δm| < 2 × 10−33 GeV, we obtain the bound

MX
>∼ (50 TeV)

(

τnn̄

3 × 108 sec

)1/9

×
(

µ

3 × 103 TeV

)4/9( |〈n̄|O4|n〉|
0.9 × 10−4 GeV6

)1/9

Uncertainty in calculation of matrix element 〈n̄|O4|n〉 is relatively unimportant for this
bound because of the 1/9 power.

Hence for relevant values of MX ∼ 50 − 100 TeV, n− n̄ oscillations might occur at
levels that are in accord with the current experiment limit but not too far below this
limit.



Conclusions

• n−n̄ oscillations are an interesting possible manifestation of baryon number violation,
of |∆B| = 2 type, complementary to proton decay. A discovery of n−n̄ oscillations
would be of profound significance.

• Useful to search for n − n̄ oscillations via reactor experiments and massive deep
underground detectors studying neutrino oscillations and searching for proton decay.
New opportunities could arise with DUSEL.

• Our calculation in an extra-dimensional model provides an example of how new physics
beyond the standard model can produce n− n̄ oscillations at rates comparable with
current experimental limits, as do 4D models yielding n− n̄ oscillations. These give
motivation for new experimental searches with increased sensitivity.


